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A Note on the Moment Generating Function 
for the Reciprocal Gamma Distribution 

By Staffan Wrigge 

Abstract. In this note we consider the function p(t) = fo etx/F(x) dx and use the Euler- 
Maclaurin expansion with the step-length h = 1/4 to obtain some useful (from a numerical 
point of view) formulae. Numerical values of cp(t) correct to lID are given for t = 0.0(0.1)5.0. 

Introduction. In [3] we analyzed the function 
00 e-tx 

(t) = f F(x) dx 

and used the Euler-Maclaurin expansion to obtain some interesting (from a numeri- 
cal point of view) formulae ((3.6) and (3.7)). These cases corresponded to the 
step-lengths h = 1 and h = 1. Using a little more sophisticated analysis, also the case 
h = 4 may be investigated. 

1. The Euler-Maclaurin Summation Formula With Step-Length h = 4. We first 
must sum the expression 

F()=00 e - kt/4 

(l F( k/4) 
It is evident that 

(1.2) F(t) = 91(t) + q2(t) + 3(t) + T4(t), 

where 
00 - tj 

Ti(t) = E re -t+e-' 

J=1 1( A 

00 e-t(J+1/2) e-t/2 

T2 (t ) F(j + 1/2) A + (2 N(2l/2e-t/2) -)e-t+e-t 

00 e-(j+ /4)t 

j-O= 
IF j + 1/4)' 

00 e_(j+3/4)t 

94(t) E 
j=O f(j +3/4) 

In the expression for 92(t), N(-) denotes the standardized normal distribution 
function, defined in [3, Eq. (3.5)]. 
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It remains to give useful alternative analytical expressions for the functions 'p3(t) 
and T4(t). We write T3(t) in the form 

(1.)e_t+4 e- t14 00 41+le-(I+l)t 

F (1 /4) F(/4) j (4 + 1)(4j - 3)... 1 

Putting I = fou e- x /4 dx and using integration by parts, we get 

(1.4) fU4 -~~~~~~0 u4j1?I-u4 /4 

(1.4) lo Lo (4i + 1)(4j-3) 1 

Thus we have 

(1.5) e e4/4[ue-x4/4dx 
U 

Comparing (1.3) and (1.5), we get after some calculations 

(1.6) T3 (t) = F (1 /4) { e + e-e t/4ex4/4 dx} 

In Section 2 we will discuss different techniques to evaluate numerically the integral 
occurring in (1.6). 

Now write 

(1.7) T4(t) = + 3/ 0 41l(+) 

F (3/4) + F(3/4) j0 (4j + 3)(4j - 1) (3) 

Using integration by parts, we may prove that 

(io\ u~~~4/4U 4/44_/ +U 
3 

(1.0) X X =_0 (4j + 3)(4J-1) (3) 

Comparing (1.7) and (1.8), we get 

(1.9) T94(t) = 1 f3t/4 + e4t eetfe / X 2 eX4/4 dx 

We will return to the integral in (1.9) in Section 2. 
Applying the Euler-Maclaurin summation formula to the function Tp(t) with a 

step-length h = 4, we get, after some manipulations, 

(1.10) TA(t) 
= Z 

ET (t) + E () B 2k{ 1 
a2k-l-,- 4_ j=0 j k =[(j +1)/21 + I2k 4I ak1 

(The coefficients an occurring in (1.10) are defined in [3, Eq. (3.23)]). Using the 
methods developed in Section 2 for computing the functions 'p (t) and pq4(t), we 
tabulated qp(t) to 15D in the interval [0, 5.0]. See Table I, where we give only 12 
decimals. 

2. Calculation of Some Integrals. To calculate the functions p93(t) and Tp4(t) as 
given by (1.6) and (1.9) we need some fast and accurate methods to compute the 
integrals 

(2.1) fte-x4/4dx and J tX2e- X/4dX. 
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We start with I. Our first technique to evaluate this integral stems from a paper by 
Kerridge and Cook [2]. To generalize their arguments we must study the polynomials 

(2.2) Pn(x) = (_)neX4/4Dne-x4/4. 

The polynomials (pn (x)) satisfy the recurrence relation 

(2.3) pn,,(x) = x3pn(x) - 3nx2pn_1(x) + 3xn(n - 
l)pn-2(x) 

-n(n - l)(n -2)Pn-3(X) 

with starting values PO = 1, PI = X3, P2 = x6 - 3X2, p3 = X9 - 9X5 + 6x. We now 
make the following Taylor series expansion 

(2.4) I =|te-x4/4 dx= 
E (x_t)n(Dxe 

)x=t/2 
dx. 

Carrying out the integration, we get 
?? 0 1 t )2n 

(2.5) te- /64 
I: 

2 P2n(2t 

n=0 (2 n + l)!2n t) 
Define the polynomials On (x) as 

(2.6) On (x) = n Pn (x) . 

Then 

_ 
/ 4/40 02n(2t) (2.7) I = dx = te'4/64 L 2n + 1 

n=O 

and the polynomials On(x) satisfy the simpler recurrence relation 

x4 
(2.8) tn+l(x) = n + I (On(x) - 3On-1(x) + 30n-2(X) -n_3(0) 

with starting values 60 = 1, 01 = x4, 62 = 2(x8 - 3x4), 63 = ,(xI2 - 9x8 + 6x4). 
To find the other technique, we study the expansion 

(2.*9) e - a2(x-1/2)4/2 = ea2/32ea[ax(1-x)]/4-[ax(1 -X)]2/2 

Now remember that the Hermite polynomials may be defined by the following 
generating function (see, e.g., Kendall and Stuart [1, p. 155]) 

(2.10) etz-t2/2 = L ___(Z) 

n=O n 

Therefore 

(2.11) e-a2(x-1/2)4/2 - ea2/32 

o 
(X(I - x)) anHn( a ) 

n=O n 

Integrating this identity between the limits 0 and 1, we get after a few rearrange- 
ments 

(2.12) 1 f+ V/2e- u4/2 du = e-a2/32 
E anHn (a/4) 

ra -a /2 n =O n!(2n + 1)(2n) 
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Making the proper manipulations, we finally get 

(2.13) I fte-z4/4 dZ = te-t4'4 2 2n (t2 ' 
0 ~~~~n=O (2n~ +)()In~ ), 

where #n(x) is defined by 

(2.14) 4Hn(x) = nH (x). 

An(x) satisfies the recurrence relation 

x2 
(2.15) 4'n+J(x) 

= +1 (4(x) - n_(X)) 

If we instead consider the expression a(x - {)2e -a2(x - 1/2)4/2 and proceed along the 
lines indicated by (2.9)-(2.12), we get 

(2.16) j Z ft2 z4/4 dz = t3e-4/4 L (21\( + 2n 

0 n=O~~~~~( nkl 1P(2n 

-4t3 e -t4/4 f/ ( 
t 

/ 
r )2 

nO(2 n + 3) (2nl+2) 

Some simplifications finally yield 

(2.17) J = Z2e 
- z4/4 dz = t 3e -t /4 E n 

2 
3(2 +1) 22n) 

0 ~~~~~n=O (2n + 3)(2n + i)( n) 

To obtain a formula for J similar to (2.7) we must introduce the polynomials 

(2.18) Pn(x) = (-1)neX4/4Dxnx2e-x4/4. 

In terms of the polynomials pn (x) we may write 

(2.19) Pn(x) = x2pn(x) - 2nxpn-1(x) + n(n - 1)pn-2(X). 

If we define the functions {(n(x)) as 

(2.20) (x) = )n!, 
we observe that 

(2.21) ~ n(X) = x2 (n (x) - 2n_1 (x) + On-2(X)) = x2A20n(x), 

and we get 

(2.22) J = tx2e- x4/4 dx = te-t4/64 nE n (+ 1 

It is evident that for small values of t we may use the simple formula 

(2.23) txae-x4/4 dx = E (_)nt4n+a+l aE{0, 2} 
n=O n !4 (4n +a +1) 

When calculating the integrals I and J we found formulae (2.7) and (2.22) to be of 
the greatest value. The convergence in the series (2.13) and (2.17) turned out to be 
rather slow. For small values of t also the formula (2.23) was useful. The resulting 
numerical values of Tp.(t) correct to (at least) liD appear in Table I. The reason why 
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we give 12D in Table I is that a use of Watson's Lemma [3, Eq. (3.23)] indicates that 
for t = 5.0 we have a precision of 14D. A comparison with Table IV of [3] confirms 
that Table IV correctly yields 10D. 

TABLE I 

Values of 'p ( t) using the polynomials pn (x). 

t 99( t t q(t) t %)(t) 
0.0 2.807770242028 1.7 0.300933511958 3.4 0.091421032961 
0.1 2.326237047400 1.8 0.275394801591 3.5 0.086581618381 
0.2 1.946771821817 1.9 0.252780695525 3.6 0.082102419937 
0.3 1.644358498906 2.0 0.232680797724 3.7 0.077949589282 
0.4 1.400823696157 2.1 0.214751780293 3.8 0.074093068791 
0.5 1.202793433329 2.2 0.198705012619 3.9 0.070506103326 
0.6 1.040305961681 2.3 0.184296711962 4.0 0.067164822585 
0.7 0.905856615825 2.4 0.171320056208 4.1 0.064047882795 
0.8 0.793731332327 2.5 0.159598832949 4.2 0.061136158425 
0.9 0.699535729986 2.6 0.148982298581 4.3 0.058412476217 
1.0 0.619858414145 2.7 0.139340995782 4.4 0.055861385110 
1.1 0.552027547158 2.8 0.130563334193 4.5 0.053468956707 
1.2 0.493932984351 2.9 0.122552782029 4.6 0.051222611791 
1.3 0.443895013087 3.0 0.115225549144 4.7 0.049110969132 
1.4 0.400566564690 3.1 0.108508667380 4.8 0.047123713408 
1.5 0.362859707863 3.2 0.102338393501 4.9 0.045251479573 
1.6 0.329889922708 3.3 0.096658875253 5.0 0.043485751382 
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